Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(2): 930-952, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38170559

RESUMO

The nutritional quality of third-generation snacks prepared from rice flour by extrusion can be improved by the addition of polyphenols such as catechins, which are known to be more stable at high temperatures. However, the extrusion parameters can impact the breakdown and release of bioactive compounds and decrease the catechin bioaccessibility. Accordingly, this study investigated the impact of different extrusion parameters, including different extrusion temperatures (110, 135, and 150 °C) and moisture content prior to extrusion (27 and 31%), on the breakdown and bioaccessibility of catechin-enriched snacks during in vitro dynamic digestion using the Human Gastric Simulator (HGS). The extrusion parameters did not significantly impact most measured variables by themselves, indicating that within the tested ranges, any of the processing conditions could be used to produce a product with similar digestive behavior. However, the interaction of extrusion parameters (temperature and moisture content) played a significant role in the snack behavior during digestion. For example, the combination of 27% moisture content and 150 °C extrusion temperature had higher catechin bioaccessibility and higher starch hydrolysis than the other treatments. Overall, these findings suggest that the processing conditions of third generation snacks enriched with catechin can be optimized within certain ranges with limited modifications in the digestive properties.


Assuntos
Catequina , Lanches , Humanos , Temperatura , Amido/metabolismo
2.
Food Res Int ; 173(Pt 1): 113201, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803531

RESUMO

Chickpeas are an agriculturally-important legume that are an excellent source of protein, fiber, and minerals. Developing chickpea-based snacks could provide consumers with snack products rich in protein and other nutrients. In this study, chickpea puree (high moisture content) and cracker (low moisture content) were each produced with large (7 mm sieve; coarse) or small (2 mm sieve; fine) particle size to investigate the impact of initial particle size and moisture content on particle breakdown, starch hydrolysis, and protein hydrolysis during in vitro digestion. All treatments underwent static in vitro oral digestion, dynamic gastric digestion in the Human Gastric Simulator (HGS), and static in vitro small intestinal digestion. The emptying rate from the HGS was significantly (p < 0.05) higher for fine puree compared to the other treatments, due to higher saturation ratio and smaller initial particle size. The reducing sugars and free amino groups released (representing starch and protein hydrolysis, respectively) from fine puree were higher than coarse puree, and fine cracker was higher than coarse cracker due to the influence of initial particle size. For example, after 360 min total in vitro digestion, the starch hydrolysis of the fine cracker (48.1 ± 3.2%) was significantly higher than (p < 0.05) the coarse cracker (36.3 ± 5.8%). Overall, crackers had higher protein and starch hydrolysis compared to puree in the liquid phase during digestion. The study showed that both the smaller initial particle size and drying significantly (p < 0.05) increased the particle size reduction during gastric digestion and starch and protein digestibility in chickpea-based snacks.


Assuntos
Cicer , Amido , Humanos , Amido/metabolismo , Lanches , Tamanho da Partícula , Água , Digestão
3.
Food Res Int ; 173(Pt 1): 113290, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803603

RESUMO

Egg white gels have been utilized as a model system to study protein breakdown kinetics based on physical and biochemical breakdown processes during in vitro gastric digestion. Additionally, the impact of regulating intragastric pH on the breakdown kinetic processes was investigated. The present study evaluated the impact of gel pH (based on the pH of protein dispersion prepared at pH 3, 5 and 7.5) and intragastric pH regulation (with or without adjustment to pH 2 during in vitro gastric digestion) on the effective diffusion of gastric juice components (water and HCl), gel softening kinetics during gastric digestion, microstructural analysis using micro- computed tomography and protein hydrolysis in the liquid and solid fraction of egg white gel digesta. Egg white gels were subjected to 30 s oral digestion and 15, 30, 60, 120, 180 or 240 min gastric digestion in a static in vitro gastric digestion model, with or without gastric pH adjustment to pH 2. The gel pH affected all the properties measured during gastric digestion and each gel pH represented a specific driving mechanism for protein breakdown. A lower gel pH (pH 3) demonstrated a higher diffusion of moisture and acid, resulting in faster softening (p < 0.05). An intermediate pH (pH 5) showed greater protein-protein interactions due to the proximity to the isoelectric point of egg white proteins, resulting in very slow softening during digestion (p < 0.05), and a higher pH (pH 7) resulted in higher acid diffusion, intermediate gel hardness and very slow softening kinetics (p < 0.05). The gastric pH adjustment during digestion of egg protein gels affected (p < 0.05) the equilibrium moisture and acid contents as well as protein hydrolysis. The study confirmed that there is an interplay between initial gel pH and the intragastric pH which affected the breakdown kinetics of egg white gels during the gastric digestion process.


Assuntos
Suco Gástrico , Estômago , Suco Gástrico/química , Cinética , Proteínas/análise , Concentração de Íons de Hidrogênio , Géis/química
4.
Food Funct ; 14(18): 8229-8247, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37674386

RESUMO

In vitro digestion is widely employed in food, nutraceutical and pharmaceutical research, and numerous in vitro gastric digestion protocols have been proposed, with a wide range of experimental conditions. Differences in the simulated gastric fluids (pH, mineral content, enzyme type and enzyme activity) of different digestion protocols may alter the results for the digestion of the same meal. This study aimed to investigate how variations in the gastric secretion rate and composition in four in vitro digestion protocols (Infogest Riddet, Infogest Semi-dynamic, UC Davis and United States Pharmacopeia) impacted the physical properties of the emptied gastric digesta. Cooked couscous was used as a model meal and subjected to simulated gastric digestion using a dynamic gastric model, the Human Gastric Simulator (HGS). The digesta were collected from the outlet of the HGS after 15, 30, 60, 90, 120, 150, or 180 min. The gastric emptying of dry matter, pH, rheological properties, and particle size were evaluated. The digestion protocol significantly influenced the solid content and moisture content of the digesta (p < 0.001), particles per gram of dry matter (p < 0.0001), gastric emptying of dry matter (p < 0.003), shear stress at 0.45 s-1 and consistency coefficient (p < 0.0001). The presence of NaHCO3 in the Infogest Riddet and Infogest Semi-dynamic gastric secretions provided an additional buffering effect and increased the digesta pH during gastric digestion. Similarly, the inclusion of mucin in the UC Davis protocol resulted in a higher flow and viscoelastic properties of the emptied digesta. The highest dilution of gastric content in the United States Pharmacopeia (USP) protocol resulted in larger particles emptied from the HGS and the longest gastric emptying half-time of all digestion protocols. These findings provide new insights into the impact of digestion protocols on the digesta properties, which can be beneficial for the design and standardization of in vitro digestion models.


Assuntos
Suco Gástrico , Estômago , Humanos , Esvaziamento Gástrico , Refeições , Suplementos Nutricionais
5.
Food Funct ; 14(15): 6877-6895, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37427445

RESUMO

The selection of gastric digestion parameters in food digestion studies using in vitro models is critical to properly represent structural changes in the stomach. This study aimed to evaluate the performance of digestion in the human gastric simulator (HGS) using generalized in vitro gastric digestion parameters (secretion rate of 4.1 mL min-1, gastric emptying rate of 5.68 g min-1) that were derived from a previous in vivo study using six starch-rich foods. Two of the six foods used in the in vivo study (cooked durum wheat porridge/semolina and pasta) were digested in the HGS for up to 240 min, then the properties of the emptied and remaining digesta were measured. The properties of the in vitro remaining digesta were compared to those measured in vivo (growing pig stomach). The trends in the gastric breakdown rate and mechanisms, dry matter emptying kinetics, and starch hydrolysis of pasta and semolina were similar to those of in vivo. Gastric breakdown and dilution kinetics in vitro and in vivo were well-related but did not have a 1 : 1 correlation, whereas gastric acidification kinetics in the HGS deviated from that observed in vivo. The results suggest that generalized digestion parameters could be used to predict the effect of food structure on in vivo gastric breakdown and emptying, but care should be taken in interpretation of results, as the gastric acidification process was different from what was observed in vivo. This information will help refine in vitro digestion model parameters to provide more physiologically-relevant data in future studies.


Assuntos
Digestão , Triticum , Humanos , Triticum/química , Estômago , Amido/química , Esvaziamento Gástrico , Grão Comestível/metabolismo
6.
Food Res Int ; 170: 112877, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316038

RESUMO

Many existing in vitro digestion systems do not accurately represent the peristaltic contractions of the gastrointestinal system; most of the systems that have physiologically-relevant peristaltic contractions have low throughput and can only test one sample at a time. A device has been developed that provides simulated peristaltic contractions for up to 12 digestion modules simultaneously using rollers of varying width to modulate the dynamics of the peristaltic motion. The force applied to a simulated food bolus varied from 2.61 ± 0.03 N to 4.51 ± 0.16 N (p < 0.05) depending on roller width. Video analysis showed that the degree of occlusion of the digestion module varied from 72.1 ± 0.4% to 84.6 ± 1.2% (p < 0.05). A multiphysics, computational fluid dynamics model was created to understand the fluid flow. The fluid flow was also examined experimentally using video analysis of tracer particles. The model-predicted maximum fluid velocity in the peristaltic simulator incorporating the thin rollers was 0.016 m/s, and the corresponding value measured using tracer particles was 0.015 m/s. The occlusion, pressure, and fluid velocity in the new peristaltic simulator fell within physiologically representative ranges. Although no in vitro device perfectly recreates the conditions of the gastrointestinal system, this novel device is a flexible platform for future gastrointestinal research and could allow for high-throughput screening of food materials for health-promoting properties under conditions representative of human gastrointestinal motility.


Assuntos
Trato Gastrointestinal , Peristaltismo , Humanos , Motilidade Gastrointestinal , Alimentos , Ensaios de Triagem em Larga Escala
7.
J Nutr ; 153(5): 1373-1388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906148

RESUMO

BACKGROUND: How starch-based food structure can affect the rate and extent of digestion in the small intestine and resulting glycemic response is not properly understood. One possible explanation is that food structure influences gastric digestion, which subsequently determines digestion kinetics in the small intestine and glucose absorption. However, this possibility has not been investigated in detail. OBJECTIVES: Using growing pigs as a digestion model for adult humans, this study aimed to investigate how physical structure of starch-rich foods affects small intestinal digestion and glycemic response. METHODS: Male growing pigs (21.7 ± 1.8 kg, Large White × Landrace) were fed one of the 6 cooked diets (250-g starch equivalent) with varying initial structures (rice grain, semolina porridge, wheat or rice couscous, or wheat or rice noodle). The glycemic response, small intestinal content particle size and hydrolyzed starch content, ileal starch digestibility, and portal vein plasma glucose were measured. Glycemic response was measured as plasma glucose concentration collected from an in-dwelling jugular vein catheter for up to 390 min postprandial. Portal vein blood samples and small intestinal content were measured after sedation and euthanasia of the pigs at 30, 60, 120, or 240 min postprandial. Data were analyzed with a mixed-model ANOVA. RESULTS: The plasma glucose Δmaxoverall and iAUCoverall for couscous and porridge diets (smaller-sized diets) were higher than that of intact grain and noodle diets (larger-sized diets): 29.0 ± 3.2 compared with 21.7 ± 2.6 mg/dL and 5659 ± 727 compared with 2704 ± 521 mg/dL⋅min, for the smaller-sized and larger-sized diets, respectively (P < 0.05). Ileal starch digestibility was not significantly different between the diets (P ≥ 0.05). The iAUCoverall was inversely related to the starch gastric emptying half-time of the diets (r = -0.90, P = 0.015). CONCLUSIONS: Starch-based food structure affected the glycemic response and starch digestion kinetics in the small intestine of growing pigs.


Assuntos
Glicemia , Oryza , Humanos , Adulto , Suínos , Masculino , Animais , Glicemia/análise , Oryza/química , Triticum , Digestão/fisiologia , Amido/química , Grão Comestível/química
8.
Food Res Int ; 157: 111270, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761582

RESUMO

In vitro gastric digestion studies commonly focus on the acidic environment of the stomach (the distal phase), neglecting that the contact time between food and salivary amylase can be extended during bolus' temporary storage in the proximal stomach (the proximal phase). Consequently, the role of the proximal phase of gastric digestion on the breakdown of solid starch-based foods is not well understood. This study aimed to address this question using a static in vitro digestion approach. Cooked starch-rich foods of different physical structures (wheat couscous, wheat pasta, rice couscous, rice noodle, and rice grain) were subjected to 30 s oral phase digestion, followed by prolonged incubation of the oral phase mixture (pH 7) for up to 30 min representing different proximal phase digestion times. Each proximal phase sample was sequentially incubated in excess simulated gastric fluid (distal phase, pH 2) for up to an additional 180 min. The proximal phase aided solid food breakdown through starch hydrolysis that caused leaching of particles <2 mm. The distal phase led to softening of food particles, but the softening process was not enhanced with longer proximal phase. In foods with smaller initial size (couscous and rice couscous), a proximal phase of 15 min or longer followed by 180-min distal phase increased starch hydrolysis in the liquid and suspended solid fractions of the digesta, indicating the influence of food structure on acid hydrolysis during in vitro gastric digestion.


Assuntos
Oryza , Amido , Culinária , Digestão , Grão Comestível/metabolismo , Oryza/química , Amido/metabolismo , Estômago , Triticum/metabolismo
9.
Food Chem ; 394: 133410, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752121

RESUMO

How the stomach can serve as a biochemical environment for starch digestion and the implications on starch emptying are not well-understood. Biochemical changes during gastric digestion of cooked wheat- and rice-based diets of varying particle size and microstructure were investigated using a growing pig model. In larger-particle size diets (rice grain, rice noodle, pasta), pH >3 was maintained in the proximal stomach digesta even until 240 min digestion, resulting in extended remaining amylase activity and accumulation of maltose from starch hydrolysis in the stomach. In smaller-particle size diets (couscous, rice couscous, semolina porridge), gastric acidification occurred faster to produce homogeneous intragastric pH and deactivated amylase. The hypothesis of the study was that food macrostructure would impact gastric acidification kinetics, and the resulting biochemical environment for starch hydrolysis in the stomach may further affect the mechanisms of food breakdown in the stomach and gastric emptying of starch.


Assuntos
Oryza , Amido , Amilases/metabolismo , Animais , Digestão , Grão Comestível/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Oryza/química , Amido/química , Estômago , Suínos , Triticum/metabolismo
10.
Food Funct ; 13(2): 920-932, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35005748

RESUMO

Quinoa is a pseudocereal that has a favorable nutrient profile and may be a beneficial addition to the diet. To evaluate potential health-promoting properties of foods, it is important to understand the rate of macronutrient hydrolysis, which is commonly quantified through in vitro digestion studies. Additionally, limited information is available comparing starch and protein hydrolysis of solid foods using static and dynamic digestion models. The objective of this study was to examine starch and protein hydrolysis in cooked quinoa using a combination of a static (saliva only) or dynamic (saliva + mincing) oral digestion model with a static (gastric fluids only) or dynamic (Human Gastric Simulator) gastric digestion model. Disruption of the pericarp of the cooked quinoa seeds during dynamic oral digestion released additional surface area, which led to faster gastric emptying during dynamic gastric digestion. Starch and protein hydrolysis were impacted by type of gastric model due to differences in pH and variations in structural breakdown. Starch hydrolysis was 29.04 ± 1.83% after 180 min dynamic gastric digestion compared to 2.85 ± 1.88% during static gastric digestion (averaged across both oral digestion models). The degree of protein hydrolysis was 4.85 ± 0.01% after 180 min in the static gastric model compared to 3.94 ± 0.18% in the dynamic gastric model (averaged across both oral digestion models). This information provides evidence on the role of food structure and breakdown (through use of static vs. dynamic oral and gastric digestion models) on quinoa starch and protein hydrolysis.


Assuntos
Chenopodium quinoa/química , Culinária , Proteínas/química , Sementes/química , Amido/química , Digestão , Humanos , Hidrólise , Modelos Biológicos , Hidrolisados de Proteína
11.
J Agric Food Chem ; 69(43): 12598-12607, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665628

RESUMO

Antibiotics are released into the environment as their global consumption increases. Uptake, accumulation, and metabolism of antibiotics by food crops is an emerging health concern as the associated risks of consuming food crops containing antibiotics are still largely unknown. This study investigated the fate of sulfamethazine, sulfamethoxazole, and their phytometabolites during in vitro digestion of the model plantArabidopsis thaliana. The amounts of parent antibiotics released during in vitro digestion were 4-5 times higher than those quantified in plant tissues prior to digestion, which was attributed to back transformation of the phytometabolites into the parent aglycones. These findings demonstrated that overlooking the proportions of phytometabolites in recent health risk assessment studies would considerably underestimate the realistic human exposure through consumption of contaminated food crops. New risk assessment frameworks are necessary to include these critical factors for comprehensively addressing human exposure to emerging contaminants through food chains.


Assuntos
Antibacterianos , Águas Residuárias , Produtos Agrícolas , Digestão , Humanos , Sulfametoxazol , Águas Residuárias/análise
12.
Food Funct ; 12(13): 6117-6119, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34037050

RESUMO

Correction for 'Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model' by Joanna Nadia et al., Food Funct., 2021, DOI: 10.1039/D0FO02917C.

13.
Food Funct ; 12(10): 4349-4372, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33884384

RESUMO

There is currently a limited understanding of the effect of food structure on physical breakdown and gastric emptying of solid starch-based foods during gastric digestion. Moisture uptake, pH, particle size, rheological, and textural properties of six solid starch-based diets from different sources (Durum wheat and high amylose white rice) and of different macrostructures (porridge, native grain, agglomerate/couscous, and noodle) were monitored during 240 min of gastric digestion in a growing pig model. Changes in the physical properties of the gastric digesta were attributed to the influence of gastric secretions and gastric emptying, which were both dependent on the buffering capacity and initial macrostructure of the diets. Differences between the proximal and distal stomach regions were found in the intragastric pH and texture of the gastric digesta. For example, rice couscous, which had the smallest particle size and highest buffering capacity among the rice-based diets, had the shortest gastric emptying half-time and no significant differences between proximal and distal stomach digesta physical properties. Additionally, a relationship between gastric breakdown rate, expressed as gastric softening half-time from texture analysis, and gastric emptying half-time of dry matter was also observed. These findings provide new insights into the breakdown processes of starch-based solid foods in the stomach, which can be beneficial for the development of food structures with controlled rates of breakdown and gastric emptying during digestion.


Assuntos
Digestão , Esvaziamento Gástrico , Oryza/química , Amido/metabolismo , Estômago , Triticum/química , Animais , Culinária , Dieta , Grão Comestível/metabolismo , Suco Gástrico/metabolismo , Conteúdo Gastrointestinal , Concentração de Íons de Hidrogênio , Masculino , Modelos Animais , Tamanho da Partícula , Reologia , Suínos
14.
Compr Rev Food Sci Food Saf ; 20(3): 2660-2698, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33884751

RESUMO

The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.


Assuntos
Digestão , Amido , Glicemia , Alimentos , Estômago
15.
Food Funct ; 12(5): 2112-2125, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33564805

RESUMO

Breakdown of solid foods during gastric digestion plays a major role in the release and absorption of nutrients in the gastrointestinal tract. The breakdown mechanisms of foods during gastric digestion may be influenced by composition, particle geometry, and the resulting moisture uptake and gastric emptying. The extent of breakdown may have implications on the pH, pepsin activity, and subsequent protein hydrolysis. This study aims to identify the influence of particle geometry on pH, buffering capacity, and breakdown mechanisms during in vitro dynamic gastric digestion. Whey protein gels made in different geometries (small, medium, and large cubes with side lengths of 3.1, 5.2, and 10.3 mm, respectively, and spheres with a diameter of 6.5 mm) were subjected to gastric digestion using the Human Gastric Simulator (HGS) over a 180 min period. Particle size in the bulk digesta showed the breakdown mechanism of spheres was primarily by erosion, whereas breakdown of cubes was by fragmentation at the beginning of digestion, followed by erosion. Moisture uptake and gastric emptying of dry matter were significantly influenced by digestion time, particle geometry, and their interaction (p < 0.001). Initial buffering capacity of the gels was highest in small cubes and lowest in large cubes, causing the pH to decrease faster in large cubes. There was a higher pepsin activity in the liquid phase of the digesta in large cubes compared to the rest of the treatments, which was hypothesized to be due to a diffusion limitation of pepsin, resulting in less diffusion into large cubes due to their lower total specific surface area. Further work is needed to develop quantitative connections between food initial properties, breakdown mechanisms, and their implications on pH, pepsin activity, and nutrient digestibility for future food design.


Assuntos
Digestão , Proteínas do Soro do Leite/metabolismo , Soluções Tampão , Esvaziamento Gástrico , Suco Gástrico/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Biológicos , Tamanho da Partícula , Pepsina A/metabolismo , Saliva/metabolismo , Água/metabolismo , Proteínas do Soro do Leite/química , alfa-Amilases/metabolismo
16.
Food Funct ; 12(2): 543-563, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367400

RESUMO

The complex relationship between food properties and their behavior during human digestion is not well understood. During gastric digestion, food chemical and physical breakdown occurs as a result of gastric secretions and peristaltic contractions, respectively. Food breakdown is modulated through food properties such as physicochemical composition and macro-structure, including texture and viscosity. Another food property that may play a crucial role in food chemical breakdown and gastric secretions, but has been largely disregarded in previous studies, is food buffering capacity. Buffering capacity is a characteristic of foods due to the presence of acid/base groups, which causes a resistance to change pH after additions of acid or alkali. Buffering capacity of food has been studied in different applications, including for production of human food and animal feed, as well as for human health applications, including gastric digestion, gastroesophageal reflux disease, development of drugs and pharmaceuticals, food allergenicity, and dental health. However, a limitation for widespread adoption of buffering capacity measurements is a standard method, as results from many previous studies are not directly comparable and use different measurement and quantification methods. The relationship between food composition and physical properties with buffering capacity as well as how food buffering capacity may influence gastric secretions and gastric emptying during digestion are not well-characterized. The development of a fundamental understanding of the influence of food properties on buffering capacity and its impact on gastric secretions and breakdown during digestion are needed for improvement of future digestion studies and for optimization of functional foods. The importance of buffering capacity in food digestion processes, such as gastric secretions and food breakdown, is described in this review, as well as a description of methods previously used to quantify buffering capacity during in vitro and in vivo digestion.


Assuntos
Digestão/fisiologia , Análise de Alimentos , Motilidade Gastrointestinal/fisiologia , Soluções Tampão , Humanos , Concentração de Íons de Hidrogênio
17.
Laryngoscope ; 131(6): 1223-1228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32770795

RESUMO

OBJECTIVE: Liquid thickeners are commonly recommended in individuals with dysphagia and recurrent aspiration as a strategy for pneumonia prevention. The goal of this study was to examine the effects of small amounts of aspirated liquid thickener on the lungs. STUDY DESIGN: Animal model. Prospective small animal clinical trial. METHODS: Adult Sprague Dawley rats (n = 19) were divided into two groups and underwent three intratracheal instillations of either xanthan gum-based nectar-thick water (0.1-0.25 mL/kg) or water-only control over the course of 8 days. Blood was collected from a peripheral vein on days 1 and 8 and submitted for complete blood count (CBC) analysis. Rats were euthanized 10 days after the last instillation, and the lungs were harvested. Histopathology was conducted on lung specimens by a blinded licensed veterinary pathologist and scored for evidence of lung injury and pneumonia. RESULTS: Fifteen animals (8 nectar-thickener group, 7 control group) survived until the endpoint of the study (day 18). Serum CBC did not show abnormalities at any timepoint in either group. Histological evidence of lung inflammation and edema were significantly greater in the nectar-thick group compared to controls (P < .05). Signs of inflammation included aggregates of foamy macrophages, expansion of bronchiolar lymphoid tissue, and large numbers of eosinophilic intraalveolar crystals. Histiocytic and neutrophilic pneumonia was noted in one animal that received thickened liquids. CONCLUSION: Recurrent aspiration of small amounts of thickened water resulted in significant pulmonary inflammation in a murine model of aspiration. Results of this study support the need for further investigation of liquid thickener safety and its efficacy in reducing the pulmonary complications of swallowing disorders. LEVEL OF EVIDENCE: NA Laryngoscope, 131:1223-1228, 2021.


Assuntos
Transtornos de Deglutição/terapia , Lesão Pulmonar/induzido quimicamente , Pneumonia Aspirativa/prevenção & controle , Polissacarídeos Bacterianos/farmacologia , Água/farmacologia , Animais , Deglutição/efeitos dos fármacos , Transtornos de Deglutição/complicações , Modelos Animais de Doenças , Inflamação , Pulmão/efeitos dos fármacos , Pneumonia Aspirativa/etiologia , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley , Recidiva , Viscosidade
18.
Food Funct ; 11(9): 7661-7680, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32897284

RESUMO

The objective of this study was to understand the possible interactions between whey protein and cranberry juice after processing that could impact either the protein digestibility or the bioaccessibility of cranberry antioxidants using an in vitro gastrointestinal digestion model. Whey protein isolate (27 or 54 mg of protein per mL) was dissolved in either cranberry juice or water and used as a model beverage system. Beverages were either non-processed or underwent thermal (low: 85 °C for 1 min, medium: 99 °C for 10 s and long: 99 °C for 5 min) or high-pressure processing (600 MPa for 4 min). After processing, beverages underwent oral (30 s), gastric (2 h) and small intestinal (2 h) digestion. During in vitro digestion, protein hydrolysis was monitored by the o-phthalaldehyde (OPA) assay, SDS-PAGE, soluble amino acid content, and pepidomic profiling using Orbitrap mass-spectrometry. Antioxidant capacity was measured with Ferric Reducing Antioxidant Power (FRAP) and 2,2-azinobis (3-ethlybenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays before and during in vitro digestion. Whey protein isolate dissolved in water had a significantly higher (p < 0.05) degree of hydrolysis and soluble amino acid content during small intestinal digestion compared to protein dissolved in cranberry juice, suggesting that cranberry juice had an effect on how protein was hydrolyzed during digestion. In all processing treatments except for long thermal processing, water and cranberry juice protein solutions had similar ß-lactoglobulin digestibility (p > 0.05), suggesting that the cranberry juice interactions with the protein do not significantly decrease ß-lactoglobulin resistance to hydrolysis by pepsin. Peptide formation also differed between whey protein dissolved in either water or juice. Cranberry juice protein solutions showed a slightly lower peptide count compared with whey protein isolate dissolved in water. Antioxidant bioaccessibility by FRAP during gastric digestion significantly increased in cranberry juice with addition of whey protein isolate. This trend might indicate a protective effect of whey protein isolate to cranberry antioxidant compounds.


Assuntos
Antioxidantes/análise , Digestão , Sucos de Frutas e Vegetais , Trato Gastrointestinal/fisiologia , Vaccinium macrocarpon , Proteínas do Soro do Leite/metabolismo , Aminoácidos/análise , Benzotiazóis/química , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Recuperação de Fluorescência Após Fotodegradação , Manipulação de Alimentos , Modelos Biológicos , Peptídeos/análise , Proteólise , Solubilidade , Ácidos Sulfônicos/química , Temperatura , Proteínas do Soro do Leite/química
19.
Food Funct ; 11(3): 2255-2267, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101209

RESUMO

Buffering capacity is defined as the ability of a material to resist changes in pH after addition of acid or alkali. Food buffering capacity is important to consider during gastric digestion as it will impact the intragastric pH and gastric secretion rate. These factors will further influence the pepsin activity and acid hydrolysis, which will ultimately impact food breakdown and gastric emptying. The objective of this study was to determine the influence of composition and initial properties of thirty commercially available foods on buffering capacity. Protein content, fat content, particle size distribution, and buffering capacity were measured. A regression model was developed to evaluate which of the tested properties had the greatest contribution to the food buffering capacity. Overall, protein content and initial pH of the food were the most important factors in determination of buffering capacity. Foods were then classified into 6 classes based on their protein content. Foods in class 6, with higher protein content (average 22.3%), had significantly higher buffering capacity than foods in class 1, with lowest buffering capacity (average 0.6% protein) (p < 0.0001). Within dairy and meat products, higher fat content produced a lower buffering capacity. The interaction between initial properties and composition also influenced buffering capacity. For example, buffering capacity in foods with low protein content (<1.4%) was influenced by the organic acid content and initial pH. Particle size was an important factor for buffering capacity, but its role is influenced by protein content. Understanding the key factors contributing to the buffering capacity of foods is crucial for digestion studies as it will impact physicochemical and enzymatic reactions during digestion.


Assuntos
Digestão , Alimentos , Estômago/química , Soluções Tampão , Humanos , Concentração de Íons de Hidrogênio
20.
Food Funct ; 11(1): 111-122, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31840698

RESUMO

Consumption of traditional West African pearl millet (Pennisetum glaucum) couscous delayed gastric emptying in our recent human study compared to other starch-based foods (white rice, boiled potatoes, pasta). The objective of this study was to determine whether physical properties of pearl millet couscous affect particle breakdown and starch hydrolysis during simulated gastric digestion to understand the basis of the slow gastric emptying. Starch fine structure and viscosity were analyzed for initial millet and wheat couscous samples by high performance size-exclusion chromatography and the Rapid Visco Analyzer, respectively. Couscous samples were subjected to simulated gastric digestion using the Human Gastric Simulator (HGS), a dynamic model of human gastric digestion. Digesta was collected from the HGS at 30 min intervals over 180 min. Particle size and percent starch hydrolysis of couscous in the digesta were evaluated at each time point. The number of particles per gram of dry mass substantially increased over digestion time for millet couscous (p < 0.05), while changed little for the wheat couscous samples. Millet couscous showed lower starch hydrolysis per unit surface area of particles than wheat couscous (p < 0.05). Slower starch hydrolysis was associated with smaller (p < 0.05) amylose chain length for millet (839-963 DP) than for wheat (1225-1563 DP), which may enable enable a denser packing of millet starch molecules that impedes hydrolysis. We hypothesize that the slow gastric emptying rate of millet couscous observed in humans may be explained by its slow starch hydrolysis property that could activate the ileal brake system, independent of high particle breakdown rate in the stomach.


Assuntos
Digestão , Grão Comestível/metabolismo , Pennisetum/metabolismo , Amido/metabolismo , Humanos , Hidrólise , Estômago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...